St Mary’s Catholic Primary School

How we teach calculations:
Calculation Policy for Mathematics

Contents

About our Calculation Policy. 4
EYFS and Year 1 - Subitising 5
Addition
Reception Combine two parts to make a whole 7
Year 1 Add with numbers up to 20 8
Year 2 Add with 2-digit numbers 12
Year 3 Add numbers with up to three digits 17
Year 4 Add numbers with up to four digits 20
Year 5 Add numbers with more than 4 digits 22
Year 6 Add several numbers of increasing complexity 24
Subtraction
Reception Finding one less 26
Year 1 28
Breaking down a whole into two or more parts (partitioning) 28
Year 1 Subtraction as reduction (taking away) 29
Year 1 Subtraction as difference 30
Year 1 Subtract from numbers up to 20 31
Year 2 Subtract with two-digit numbers 33
Year 3 Subtract with two and three-digit numbers 35
Year 4 Subtract with up to four-digit numbers 39
Year 5 Subtract with at least four-digit numbers including money, measures, decimals 41
Year 6 Subtract with increasingly large and more complex numbers and decimal values. 43
Multiplication
Reception Double a number 45
Year 1 Multiply with concrete objects, arrays and pictorial representations. 46
Year 2 Multiply using arrays and repeated addition (using at least $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s). 50
Year 3 Multiply 2-digits by a single digit number. 53
Year 4 Multiply 2 and 3-digits by a single digit, using all multiplication tables up to 12×12 55
Year 5 Multiply up to 4 -digits by 1 or 2 digits. 57
Year 6 Short and long multiplication as in Y 5 , and multiply decimals with up to 2d.p by a single digit 60
Reception Halving a number 62
Division
Year 1 Recall and use halves of all numbers to 10 63
Year 2 Group and share, using the \div and $=$ sign 66
Year 3 Divide 2-digit numbers by a single digit 68
Year 4 Divide up to 3-digit numbers by a single digit (without remainders initially) 72
Year 5 Divide up to 4 digits by a single digit, including those with remainders 74
Year 6 Divide at least 4 digits by both single-digit and 2-digit numbers (including decimal numbers and quantities) 76
PRESENTATION GUIDELINES 80

About our Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the 'Development Matters' EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

EYFS and Year 1 - Subitising

Subitising: a skill we all use but are unlikely to remember learning. Now 'subitising to 5 ' is explicitly specified in the pilot Early Learning Goals (ELG) for Mathematics.

So, what is subitising? Why is it important? And how do practitioners provide opportunities to develop this skill in young children?
The pilot Framework for Early Years Foundation Stage has been published and is due to be piloted by 25 schools in 2018/19. Within this framework sit the proposed Early Learning Goals (p12/13), including those for mathematics. There are two goals for mathematics: Number, and Numerical Patterns. Within

Number, the second of three bullet points is: Subitise (recognise quantities without counting) up to 5 .

What is Subitising?

Sarama and Clements (2009) ${ }^{1}$ defined subitising as "A quick attention toward numerosity when viewing a small set of objects".
It is the ability to quickly recognising how many objects are in a group without actually counting them. As adults, most people can subitise up to five objects - this is called perceptual subitising. We also subitise larger numbers of objects by 'seeing' them in groups of five or less and combining these - this is called conceptual subitising.

Why is it important?

Our ability to perceive the exact quantity of small groups of numbers, and to put these numbers together to perceive the quantity of larger groups, is fundamental to our understanding of how numbers partition.

For example:

...you have probably recognised 4 and 3 and know that they add to make 7 , most likely without any counting or calculation. If this is the case, you have subitised. This is an important part of developing number sense. Subitising this group of 7 is far more efficient than either using a touch-counting method, or perceiving 4, then counting on.

NCETM Assistant Director for Early Years and Primary, Viv Lloyd, says, "Subitising is so critical because you are starting to see the numbers within numbers, so once you start subitising to 6 , you are starting to see 5 and 1, 4 and 2, or 3 and 3 , and that is building a sense of the 6 -ness of six as well as being
introduced to the number bonds. Children can playfully experience this and draw on that knowledge in later years to recall those facts. Separation and recombining is a more effective calculation strategy than 'counting on' or 'counting back'. So counting on and counting back is not in the pilot Early Learning Goals (whereas it was previously in the old ones), and subitising is now explicitly specified."
See: https://www.ncetm.org.uk/resources/52560

What activities could we do to encourage children to subitise?
We need to provide opportunities for children to develop this skill.

- 'Accidently' spilling some counters / teddies / dinosaurs on the floor. How many are there? How do you know? How did you see it? Did you see it another way?
- Games that involve hiding a small number of objects in a box or under a cloth, and getting children to take a peek and say how many there are.
- Throwing a number (up to 5) of two-sided beanbags. Children then say what they can see "I can see 2 patterned and 1 plain beanbag - there are 3 beanbags altogether". A more complex version of this would be to hide some of a known number of beanbags. "I have 3 beanbags. I can see 2 , so there must be 1 in the box."
- Using 5 seeds, plant them in 2 flowerpots, talking about how many seeds are planted in each pot and making a total, for example, " 2 seeds are planted in my pot and 3 seeds are planted in your pot. There are 5 seeds altogether".

Reception Combine two parts to make a whole.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.

Year 1 Add with numbers up to 20

Key vocabulary:

add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line

Key skills for addition at Y1:

- Read and write
numbers to 100 in numerals, incl. 120 in words

and 20, and addition facts within 20
- Count to and across 100
- Count in multiples of 12,5 and 10
- Solve simple 1step problems involving addition using objects, number lines and pictorial representations

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Year 2 Add with 2-digit numbers. Develop mental fluency with addition and place value involving 2-digit numbers, then establish more formal methods.

	Concrete		Pictorial				Abstract
	Eg. $34+20$						$27+30=57$
	Use dienes$\text { Eg. } 34+20$		Use bar modell	side	s too		
			27	10	10	10	
			27		30		

Add 2-digit numbers and units

STEP 1: Only provide examples that do NOT cross the tens boundary until they are secure with the method itself.

	Concrete	Pictorial	Abstract
	Hundred square Dienes base 10 apparatus $34+13$	Number line Bar modelling	Partitioned column method

STEP 2: Once children can add a multiple of ten to a 2-digit number mentally (e.g. 80+11), they are ready for adding pairs of 2-digit numbers that DO cross the tens

 boundary (e.g. $58+43$).

Key vocabulary:

add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line , sum, tens, units, partition, addition, column, tens boundary

addend addend

Addition (commutative)

Key skills for addition at Y2:

- Add a 2-digit number and ones (e.g. $27+6$)
- Add a 2-digit number and tens (e.g. $23+40$)
- Add pairs of 2-digit numbers (e.g. $35+47$)
- Add three single-digit numbers (e.g. $5+9+7$)
- Show that adding can be done in any order (the commutative law).
- Recall bonds to 20 and bonds of tens to 100 ($30+70$ etc.)
- Count in steps of 2,3 and 5 and count in tens from any number.
- Understand the place value of 2-digit numbers (tens and units)
- Compare and order numbers to 100 using < > and = signs.
- Read and write numbers to at least 100 in numerals and words.
- Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Year 3 Add numbers with up to three digits.

Step 2: Move to the compact column addition method, with "carrying".

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, "carry", expanded, compact

Addition (commutative)

Key skills for addition at Y3:

- Read and write numbers to 1000 in numerals and words.
- Add 2-digit numbers mentally, incl. those exceeding 100.
- Add a three-digit number and ones mentally $(\mathbf{1 7 5}+8)$
- Add a three-digit number and tens mentally $(\mathbf{2 4 9}+\mathbf{5 0})$
- Add a three-digit number and hundreds mentally $\mathbf{(3 8 1 + 4 0 0)}$
- Estimate answers to calculations, using inverse to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.
- Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones.)
- Continue to practise a wide range of mental addition strategies, ie. number bonds, adding the nearest multiple of 10, 100, 100 and adjusting, using near doubles, partitioning and recombining.

Video clip: Demonstration of expanded 3-digit column addition

Year 4 Add numbers with up to four digits.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, „carry", expanded, compact, thousands, hundreds, digits, inverse

Addition (commutative)

Key skills for addition at Y 4 :

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a four-digit number.
- Round any number to the nearest 10,100 or 1000 .
- Estimate and use inverse operations to check answers.
- Solve 2 -step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, ie. number bonds, add thenearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining.
- Add numbers with up to 4 digits using the formal written method of column addition
- Solve 2 -step problems in contexts, deciding which operations and methods to use and why.
- Estimate and use inverse operations to check answers to a calculation.

Year 5 Add numbers with more than 4 digits including money, measures and decimals with different numbers of decimal places.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line , sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", expanded, compact , vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenths, hundredths, thousandths

Addition (commutative)

Key skills for addition at Y5:

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of 10, 100, 100 and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
- Use rounding to check answers and accuracy
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000
- Add numbers with more than 4 digits using formal written method of columnar addition.

Year 6 Add several numbers of increasing complexity

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, plus, addition, column, tens boundary, hundreds boundary, increase, "carry", expanded, compact , vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths

Addition (commutative)

Key skills for addition at Y6:

- Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use and why.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy. T Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Reception Finding one less

Key vocabulary:

take away, less than, the difference, subtract, minus, fewer, decrease

First...then...now...

Key skills for subtraction in EYFS:

Count reliably with numbers from 1-20
Place numbers from 1-20 in order
Say which number is one more or one less than a given number (1-20)
Using quantities and objects, they subtract two single-digit numbers and count back to find the answer
They solve problems with halving

Year 1 Breaking down a whole into two or more parts (partitioning)

Having experienced finding an unknown part represented within an addition equation, children can progress to finding the unknown part using a subtraction structure. This is the partitioning structure of subtraction there are two distinct parts, one of which is unknown (it can also be thought of as the 'not' structure). This is different to the REDUCTION structure (see below), where one part is removed or taken away from the whole.
Concrete
Use concrete resources to model the partitioning
structure. Present children with contextual examples
like these, for numbers within ten.
There are six children. Two have put their coats on.
How many have not put their coats on?

There are eight pencils. Five have been sharpened. How many have not been sharpened?

More examples:
There are five windows Three are open. How many are closed?
There are seven children. Six of them are having packed lunch. How many of them are not having a packed lunch.

Pictorial

Now present these problems using pictures / children to draw them on their whiteboards / paper.

Use pictorial prompts. Children to come up with their own problems based on the picture.

THEN use multi-link to represent the children / pencils / whatever is in the question.

Abstract

There are six children. Two have put their coats on. How many have not put their coats on?

$6-4=2$
The six represents all of the children.
The minus 2 represents the children who have put their coats on.
The 4 represents the children who have not put their coats on.

Use part-part-whole diagrams.

Year 1 Subtraction as reduction (taking away)

When modelling, draw children's attention to the 'then' part of the story

What does the 4 represent?
What does the minus 1 represent?
What does the 3 represent?

Also consider cases where the subtrahend is 0 . You will need to consider carefully how to represent the ' 0 ' in the 'then' box. This should not be empty. The ' 0 ' signifies that nothing changes.

Encourage children to physically remove items using touch counting.
$4-3=$

The bar model can also be used

Q \&囚O

$x|x| x$

Abstract

$4-1=3$
What does the 4 represent?
What does the minus 1 represent?
What does the 3 represent?

Act out problems in different ways

What is the same? What is different?

Mary had 7 letters in her bag and she posted 3.

How many did she have left?
$7-3$ = ?

Mary had 7 letters in her bag and after she posted some, she had 4 left. How many did she post?
$7-$? $=4$
Mary had some letters and after posting 3, she had 4 left.

How many did she start with?
? $-3=4$

Year 1 Subtraction as difference

This will be introduced practically with the language _find the difference/distance between' and „how many more?" in a range of familiar contexts.

Year 1 Subtract from numbers up to 20

Making 10 using ten frames	Children to present the ten frame pictoriall and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend.
14-5		$14-5=9$
	7	41
$\square 1-1$		$14-4=10$

Mental subtraction

Children should start recalling subtraction facts up to and within 10 and 20, and should be able to subtract zero.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

First...then...now..

Key skills for subtraction at Y1:

- Given a number, say one more or one less.
- Count to and over 100, forward and back, from any number.
- Represent and use subtraction facts to $\mathbf{2 0}$ and within 20.
- Subtract with one-digit and two-digit numbers to 20 , including zero.
- Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string,objects, cubes) and pictures, and missing number problems.
- Read and write numbers from 0 to 20 in numerals and words.

Year 2 Subtract with two-digit numbers

Subtract on a number line by counting back, aiming to develop mental subtraction skills. This strategy will be used for:

- 2-digit numbers subtract units (by taking away / counting back) e.g. 36-7
- 2-digit numbers subtract tens (by taking away / counting back) e.g. 48-30
- Subtracting pairs of 2-digit numbers (see below:)
Concrete

Use the dienes alongside the number line to model partitioning.

NB When subtracting, you do not need two sets of dienes. It needs to be drawn out that the subtraction is FROM the original number. There are not two numbers.

Combine methods with use of a hundred square to reinforce understanding of number value and order.

Children to draw the dienes and use a different colour to cross out.

Teaching children to bridge through ten can help them to become more efficient, for example 42-25:

Abstract
Ensure that you present children with a variety of questions: TAKE AWAY (REDUCTION) AND DIFFERENCE.

Use the bar model:

48		
47 23 $?$		

Ten frames / bead strings can still be used here, especially when doing 2-digit subtract units where they have to bridge through 10. This links to 'making 10 from Y 1 .

36-7
$36-6=30$
$30-1=29$

Mental strategy - subtract numbers close together by counting on

Many mental strategies are taught. Children are taught to recognise that when numbers are close together, it is more efficient to count on the difference. They need to be clear about the relationship between addition and subtraction.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units

Key skills for subtraction at Y2:

- Recognise the place value of each digit in a two-digit number.
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 .
- Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a two-digit number and ones, a two-digit number and tens, and two two-digit numbers.
- Show that subtraction of one number from another cannot be done in any order.
- Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
- Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
- Read and write numbers to at least 100 in numerals and in words.

Year 3 Subtract with two and three-digit numbers

Step 1: Introduce partitioned column subtraction method where NO exchanging is required.

Concrete	Pictorial	Abstract
Use dienes / PV counters to make the bigger number. Draw out that this is because you are subtracting an amount from this number. It is the WHOLE. You are subtracting one of the parts to find the other part.	Draw the dienes or PV counters alongside the written calculation to help show working.	$\begin{aligned} & 89-35=54 \\ & 80+9 \\ & -30+5 \\ & \hline 50+4 \end{aligned}$ $\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$

Step 2: introduce "exchanging" (regrouping) through practical subtraction.

Concrete
Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters. Draw out that this is because you are subtracting an amount from this number. It is the WHOLE. You are subtracting one of the parts to find the other part.

72-47

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of 10 for ten units. Then subtract 7, and subtract 4 tens.

Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Pictorial

Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.

Continue to use the bar model to represent the problems.

626	
275	351

Abstract
Children can start their formal written
method by partitioning the number into
clear place value columns.

When learning to "exchange", explore "partitioning in different ways" so that pupils understand that when you exchange, the VALUE is the same ie $72=70+2=$ $60+12=50+22$ etc. Emphasise that the value hasn't changed, we have just partitioned it in a different way.

Please see:

https://www.youtube.com/watch?v=dP8NI FLZzOg

Step 3: Once pupils are secure with the understanding of "exchanging", they can use the partitioned column method to subtract any 2 and 3digit numbers.

Abstract

Counting on as a mental strategy for subtraction:

Continue to reinforce counting on as a strategy for close-together numbers (e.g. 121-118), and also for numbers that are "nearly" multiples of $10,100,1000$ or $£ s$, which make it easier to count on (e.g. 102-89, 131-79, or calculating change from $£ 1$ etc.).

Start at the smaller number and count on in tens first, then count on in units to find the rest of the difference:

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit

Key skills for subtraction at Y3:

- Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds .
- Estimate answers and use inverse operations to check.
- Solve problems, including missing number problems.
- Find 10 or 100 more or less than a given number.
- Recognise the place value of each digit in a 3-digit number .

ESTIMATE

- Counting up differences as a mental strategy when numbers are close together or near multi-ples of 10 (see examples above)

CALCULATE

- Read and write numbers up to 1000 in numerals and words.
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or21), and select most appropriate methods to subtract, explaining why.

Video clips
https://www.youtube.com/watch?v=RCCLseBLBSo
https://www.youtube.com/watch?v=dP8NIFLZzOg

Year 4 Subtract with up to four-digit numbers

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance be-tween, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse

Key skills for subtraction at Y4:

- Subtract by counting on where numbers are close together or they are near to multiples of 10,100 etc.
- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number Round any number to the nearest 10,100 or 1000
- Solve number and practical problems that involve the above, with increasingly large positive numbers.

Year 5 Subtract with at least four-digit numbers including money, measures, decimals.

Concrete	Pictorial	Abstract
Use PV counters Children who are still not secure with number facts and place value will need to remain on the partitioned column method (see Y4) until ready for the compact method.	Draw PV counter s Add a "zero" in any empty decimal places to aid understanding of what to subtract in that column.	Compact column subtraction (with "exchanging") and using larger integers. See video: moving to the compact method https://www.youtube.com/watch?v=3ihxp 2manhs Subtract with decimal values, including mixtures of integers and decimals, aligning the decimal point. Create lots of opportunities for subtracting and finding differences with money and measures.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y5:

- Subtract numbers mentally with increasingly large numbers.
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy .
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0.
- Round any number up to 1 million to the nearest 10, 100, 1000, 10000 and 100000.

Year 6 Subtract with increasingly large and more complex numbers and decimal values.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y6:

Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
Read, write, order and compare numbers up to 10 million and determine the value of each digit
Round any whole number to a required degree of accuracy
Use negative numbers in context, and calculate intervals across zero.
Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

```
See previous videos for introducing the compact column method.
```


Reception Double a number.

- Understand that doubling is adding the same number to itself
- In real life contexts, use practical equipment to identify the doubles of numbers up to 5

Year 1 Multiply with concrete objects, arrays and pictorial representations.

Repeated addition

Use different objects to add equal groups.

田㽗
 1

There are 3 plates. Each plate has 2 star biscuits on it. How many biscuits are there?

This is a baking tray for making buns.
How many buns can fit on the top row?
How many on the second row? Third row? Fourth row?
The answer to all of these is 5 giving rise to the sum:
$5+5+5+5$

Write addition sentences to describe objects and pictures.

Present practical problem solving activities involving counting equal sets or groups, as above.

Arrays- showing commutative multiplication

Create arrays using counters/ cubes to show multiplication sentences.

Use an array-finder (two strips of card stapled together at a right angle).
Give children a piece of paper with large squares on it. Place the array-finder onto the grid to create an array. EG. Find the array that shows 2 x 6. Is yours the same as your partner's? Are you both correct? Why? \rightarrow COMMUTATIVE MULTIPLICATION

Draw arrays in different rotations to find commutative multiplication sentences.
$000 \quad 4 \times 2=8$
$2 \times 4-8$

$4 \times 2=8$

Use an array to write multiplication sentences and reinforce repeated addition.

$5+5+5=15$
$3+3+3+3+3=15$
$5 \times 3=15$
$3 \times 5=15$

```
Key vocabulary: groups of, lots of, times, array, altogether, multiply, count
    multiplication sign
        is equivalent to
        factor factor product
```

 Multiplication (commutative)
 Key skills for multiplication at $\mathbf{Y} 1$:

- Count in multiples of 2,5 and 10.
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- Make connections between arrays, number patterns, and counting in twos, fives and tens.
- Begin to understand doubling using concrete objects and pictorial representations.

Year 2 Multiply using arrays and repeated addition（using at least 2s，5s and 10s）．

Use repeated addition on a number line

Concrete
Children should use their of counting in equal
steps in the context of money as a way of
understanding multiplication as repeated
addition．They should explore repeated addition
practically making groups of equal size and also
through the model of an array．

$4 \times 5=20$

Tally charts help children see that multiplication is repeated addition．When finding the total，children may initially count but should be encouraged to recognise the multiplication fact $5 \times 5=25$制册册朋册

Abstract

$4 \times 5=20$
$5 \times 4=20$
$5+5+5+5=20$
$4+4+4+4+4=20$
Children should relate multiplication（as repeated addition）to other familiar contexts such as identifying the time on a clock without having to count round in fives．

When the minute hand is pointing at five，it has moved through five groups of 5 minutes since the last o＇clock time．Knowing multiplication facts for the $5 x$ table supports fluent telling of time and solving some time problems．

Use arrays

Concrete

Create arrays using counters/ cubes to show multiplication sentences.

Use an array-finder (two strips of card stapled together at a right angle).
Give children a piece of paper with large squares on it. Place the array-finder onto the grid to create an array. EG. Find the array that shows 2 x 6. Is yours the same as your partner's? Are you both correct? Why? \rightarrow COMMUTATIVE MULTIPLICATION

Please see the following video: practical multiplication and the commutative law.
https://www.youtube.com/watch?v=VGkjjVfnGYI \&list=PLQqF8sn28L9yj34NpXK7Yffze7ZoXTiix\&ind ex=2

Pictorial

Children to draw the arrays.

THEN use bar modelling.
ONE BAR then represents 5 .

5
5
5
5

$5 \times 4=20$

Abstract

Rote counting should be linked to repeated addition and the creation of arrays. Children should learn that multiplication is a convenient way of repeatedly adding a number to itself e.g. $2+2+2+2+2+2$ can be said as 2×6 (2 added to itself 6 times). The array created can then be used to demonstrate commutativity i.e. that 2×6 is the same as 6×2. Children should make links to real life application of multiplication as repeated addition.

Children should begin to relate counting in steps of $2,3,5$ and 10 to the multiplication tables.
$4 \times 5=20$
$5 \times 4=20$
$5+5+5+5=20$
$4+4+4+4+4=20$

Ensure that children are given missing number examples such as 3 x _ \qquad $=6$.

Use mental recall		
		Children should begin to recall multiplication facts for $\mathbf{2 , 5} \mathbf{5}$ and $\mathbf{1 0}$ times tables through practice in counting and understanding of the operation. Teaching for understanding of multiplication facts: https://www.youtube.com/watch?v=YPWm OVt8vgw\&list=PLQqF8sn28L9yi34NpXK7Yffz e7ZoXTiix

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times..

Multiplication (commutative)

Key skills for multiplication at Y2:

- Count in steps of 2, 3 and 5 from zero, and in 10 s from any number.
- Recall and use multiplication facts from the 2,5 and 10 multiplication tables, including recognising odd sand evens.
- Write and calculate number statements using the x and = signs.
- Show that multiplication can be done in any order (commutative).
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
- Pupils use a variety of language to discuss and describe multiplication.

Year 3 Multiply 2-digits by a single digit number.

Concrete
Show the link with arrays to first introduce the grid method.

Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10 s and 1 s place value counters), then translate this to grid method format Please see:
https://www.youtube.com/watch?v=qyTRtoqYi7Q\&lis t=PLQqF8sn28L9yi34NpXK7Yffze7ZoXTiix

4 rows of 10
4 rows of 3

Move on to using Base 10 to move towards a more compact methoc.

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Fill each row with 126 .

Add up each column, starting with the ones making any exchanges needed.

Pictorial

Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

$\angle 4 \times 3=72$		
x	20	4
3	00 00 00 60	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & 12 \end{aligned}$

Bar modelling helps to support learners when solving problems with multiplication alongside the formal written methods.

Abstract

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\mathbf{X}	30	5
7	210	35

$$
210+35=245
$$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method

x	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

To do this, children must be able to:

- Partition numbers into tens and units
- Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value
- Recall and work out multiplication facts in the $\mathbf{2 , 3 , 4 , 5 , 8}$ and $\mathbf{1 0}$ times tables.
- Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value
multiplication sign
is equivalent to

Multiplication (commutative)

Key skills for multiplication:

- Recall and use multiplication facts for the $2,3,4,5,8$ and 10 multiplication tables, and multiply multiples of 10.
- Write and calculate number statements using the multiplication tables they know, including 2-digit x single-digit, drawing upon mental methods, and progressing to reliable written methods.
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems eg. using commutativity ($4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$) and for missing number problems ? $\times 5=20,3 \times ?=18, ? \times ?=32$

Year 4 Multiply 2 and 3-digits by a single digit, using all multiplication tables up to $\mathbf{1 2 \times 1 2}$.

Concrete	Pictorial	Abstract					
As Y3 - continue to develop the grid method. Use the PV counters / dienes (base 10) equipment.	As Y3 - draw the PV counters or dienes.	Eg. $136 \times 5=680$				$\begin{aligned} & 500 \\ & 150 \end{aligned}$	
	Use bar modelling to represent the problem.	x 5	100	30	6	$+\quad 30$	
			500	150	30		
Children should be able to: - Approximate before they calculate, and make this a regular part of their calculating, going back to the approximation to check the reasonableness of their answer. eg:		\sim Encourage column addition to add accurately. Move onto short multiplication (see Y 5) if and when children are confident and accurate multiplying 2 and 3 -digit numbers by a single digit this way, and are already confident in "carrying" for written addition.					
- " 346×9 is approximately $350 \times 10=3500$ - Record an approximation to check the fin	answer against.						

- Multiply multiples of ten and one hundred by a single-digit, using their multiplication table knowledge.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse

Multiplication (commutative)

Key skills for multiplication at Y 4 :

- Count in multiples of 6, 7, 9, 25 and 1000
- Recall multiplication facts for all multiplication tables up to 12×12.
- Recognise place value of digits in up to 4-digit numbers
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.
- Count in multiples of 6, 7, 9, 25 and 1000
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

Year 5 Multiply up to 4-digits by 1 or 2 digits.

Introducing column multiplication

Introduce by comparing a grid method calculation to a short multiplication meth-od, to see how the steps are related, but notice how there are less steps involved in the column method (see video).
Children need to be taught to approximate first, e.g. for 72×38, they will use rounding: 72×38 is approximately $70 \times 40=2800$, and use the approximation to check the reasonableness of their answer against.

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated ad-dition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., parti-tion, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication, 'carry'

Multiplication (commutative)

Key skills for multiplication at Y5:

- Identify multiples and factors, using knowledge of multiplication tables to 12x12.
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10, 100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculations and methods appropriately.

Video clips:

Moving from grid method to a compact method
Reinforcing rapid times table recall
Demonstration of long multiplication

Year 6 Short and long multiplication as in Y5, and multiply decimals with up to 2d.p by a single digit.

Children will be able to:

- Use rounding and place value to make approximations before calculating and use these to check answers against.
- Use short multiplication (see Y 5) to multiply numbers with more than 4-digitsby a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.
- Use long multiplication (see Y 5) to multiply numbers with at least 4 digits by a 2 -digit number.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, "carry", tenths, hundredths, decimal

Multiplication (commutative)

Key skills for multiplication at Y6:
Recall multiplication facts for all times tables up to $\mathbf{1 2 \times 1 2}$ (as Y4 and Y5).
Multiply multi-digit numbers, up to 4-digit x 2-digit using long multiplication.
Perform mental calculations with mixed operations and large numbers.
Solve multi-step problems in a range of contexts, choosing appropriate combinations of opera-tions and methods.
Estimate answers using round and approximation and determine levels of accuracy.
Round any integer to a required degree of accuracy.

Video clips:

Moving from grid method to a compact method (youtube)
Reinforcing rapid times table recall: (youtube)
Demonstration of long multiplication (SLEP)

Reception Halving a number.

Concrete	Pictorial	Abstract Use a range of objects to explore: Understand that when an amount has been shared equally all parts are the same Recognise, by counting, whether an amount has been shared equally or not In real life contexts, use practical equipment and equal sharing to find one half of an even amount of objects Understand that the terms halving and sharing between two relate to splitting into two equal sized parts Halving means sharing (dividing) into two equal groups. If I share 6 into two equal groups, there are 3 in each group. Half of 6 is 3. 6 divided by two is 3.

Year 1 Recall and use halves of all numbers to 10.

Concrete	Pictorial	Abstract
Use a range of objects to explore: - halves as splitting a group into two equal parts - Recall halves for even numbers to ten using finger patterns to support if required - Recall halves for even numbers from 12 to 20 - Find a half of an even quantity - Find half of an odd quantity using materials that can be cut e.g. grapes or buns I have 10 cubes, can you share them equally in 2 groupa?	Represent the sharing pictorially. Children use pictures or shapes to share quantities. Share 7 apples between two people	Halving means sharing (dividing) into two equal groups. If I share 6 into 2 equal groups, there are 3 in each group. Half of 6 is 3 . $6+2=3$ Children should also be encouraged to use their 2 times tables facts. 7 apples shared between two people is $31 / 2$ apples each.

Year 1 Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity (including measure)

Concrete	Pictorial	Abstract
Use a range of objects to explore: - Find a quarter of an object (using objects that can be accurately quartered e.g. a KitKat) - Recognise and name a quarter as one of four equal parts of a quantity (which is a multiple of 4) - Find a quarter of a quantity - Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity (including measure) SHARING There are 12 cakes and I share them out onto 4 plates. How many cakes will there be on each plate? Use cakes and plates to model. Then use cubes / counters to represent the object.	Represent the problem pictorially. SHARING There are 12 cakes and I share them out onto 4 plates. How many cakes will there be on each plate? GROUPING There are 12 cakes in my tin. I want to put 3 in each box. How many boxes will I need? How many groups of 3 will I have?	$12 \div 4=3$

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array

division sign

Key number skills needed for division at Y1: with the support of the teacher
is equivalent to 1
$=3$
quotient

Division

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays
- Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Year 2 Group and share, using the \div and = sign

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over

Division

Key number skills needed for division at Y 2 :

- Count in steps of 2,3, and 5 from 0
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Year 3 Divide 2-digit numbers by a single digit

Step 1: Grouping on a number line

Children continue to work out unknown division facts by grouping on a number line from zero. They are also now taught the concept of remainders, as in the example. This should be introduced practically and with arrays, as well as being translated to a number line. Children should work towards calculating some basic division facts with remainders mentally for the $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s , ready for "carrying" remainders across within the short division method.

Concrete	Pictorial	Abstract
Divide objects between groups and see how much is left over. $14 \div 3$	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them ti divide an aount and clearly show a remainder.	Complete written divisions and show the remainder using r.

Real life contexts need to be used routinely to help pupils gain a full understanding, and the ability to recognise the place of division and how to apply it to problems.

Key Vocabulary:

share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Division

Key number skills needed for division at Y3:

- Recall and use multiplication and division facts for the $2,3,4,5,8$ and 10 multiplication tables (through doubling, connect the 2,4 and 8 s).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to for-mal written methods.
- Solve problems, in contexts, and including missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts (30 $\times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers by 1-digitnumbers and progressing to the formal written method of short division.

Year 4 Divide up to 3-digit numbers by a single digit (without remainders initially)

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor
dividend
division sign
is equivalent to

Division

Key number skills needed for division at Y 4 :

- Recall multiplication and division facts for all numbers up to $\mathbf{1 2 \times 1 2}$.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1 .
- Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
- Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example $200 \times 3=600$ so $600 \div 3=200$
- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Divide up to 4 digits by a single digit, including those with remainders.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, "carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

Division

Key number skills needed for division at Y5:

- Recall multiplication and division facts for all numbers up to 12×12 (as in Y4).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses.
- Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 r 2=241 / 2=24.5 \approx 25$).
- Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates.

Year 6 Divide at least 4 digits by both single-digit and 2-digit numbers (including decimal numbers and quantities)

Short division with remainders:

Where remainders occur, pupils should express
them as fractions, decimals or use rounding, depending upon the problem.

Key Vocabulary: As previously, \& common factor

dividend
division sign
 divisor

Division

Key number skills needed for division at Y6:

- Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division where appropriate.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Solve problems involving all 4 operations.
- Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
- Use written division methods in cases where the answer has up to two decimal places.
- Solve problems which require answers to be rounded to specified degrees of accuracy.

PRESENTATION GUIDELINES

If using a worksheet, the date and LO should already be printed on the worksheet or a space provided for children to write them on

